Automated Insulin Delivery in Insulin-Treated Type 2 Diabetes: A Comprehensive Review of Randomized Controlled Trial Evidence and Clinical Implications

Automated Insulin Delivery in Insulin-Treated Type 2 Diabetes: A Comprehensive Review of Randomized Controlled Trial Evidence and Clinical Implications

Highlights

  • Automated insulin delivery (AID) systems significantly improve glycemic control in insulin-treated type 2 diabetes patients compared to conventional insulin delivery combined with continuous glucose monitoring (CGM).
  • Randomized controlled trials demonstrate notable HbA1c reductions (~0.6–0.8%) and marked increases in time-in-range (TIR) without increased hypoglycemia risk.
  • Longer-term extension studies indicate sustained glycemic benefits and safety, supporting the integration of AID systems in type 2 diabetes management.
  • Incorporation of patient-centered digital tools and shared decision-making may further optimize therapy adherence and outcomes.

Background

Type 2 diabetes mellitus (T2DM) affects millions worldwide, with a substantial proportion requiring insulin therapy due to progressive beta-cell failure and worsened glycemic control. Effective and safe insulin delivery is essential to mitigate hyperglycemia-related complications. While automated insulin delivery (AID) systems have revolutionized type 1 diabetes management by combining insulin pumps with real-time CGM and algorithm-driven dosing adjustments, their role in insulin-treated T2DM has remained less defined. Given the distinct insulin resistance and beta-cell dysfunction in T2DM, along with a typically older and more heterogeneous patient population, robust clinical evidence from randomized controlled trials (RCTs) is crucial to guide adoption. This review synthesizes the current RCT evidence on AID use in insulin-treated T2DM and integrates complementary research highlighting lifestyle interventions and digital tools that intersect with technology-driven insulin management.

Key Content

Randomized Controlled Trials of AID in Insulin-Treated Type 2 Diabetes

A multicenter, randomized, controlled 13-week trial by Kudva et al. (NEJM, 2025) enrolled 319 insulin-treated adult T2DM patients randomized 2:1 to AID versus control groups, both using CGM. The AID arm demonstrated a mean HbA1c decline of 0.9 percentage points (from baseline 8.2% to 7.3%) versus 0.3 percentage points in controls (from 8.1% to 7.7%), yielding a statistically significant mean adjusted difference of -0.6 percentage points (95% CI, -0.8 to -0.4; P<0.001). The percentage time in glycemic target range (70–180 mg/dL) increased by 16 percentage points in the AID group (from 48% to 64%) compared with 1 percentage point in controls (51% to 52%; P<0.001). All hyperglycemia-related CGM metrics favored AID, while hypoglycemia rates remained low without significant between-group differences. These findings underscore the potential of AID to enhance glycemic outcomes safely in this population.

A complementary single-arm, prospective trial (JAMA Netw Open, 2025) evaluating the Omnipod 5 AID system in 305 diverse insulin-treated T2DM adults corroborated these results, with a mean HbA1c reduction of 0.8% over 13 weeks. This study included a substantial proportion of racial and ethnic minorities, users of multiple daily injections (MDI), basal-only insulin, and concurrent antidiabetic agents (GLP-1 receptor agonists and SGLT-2 inhibitors), demonstrating consistent efficacy across subgroups. TIR improved by 20 percentage points without increases in hypoglycemic episodes or diabetic ketoacidosis, supporting AID’s safety and broad applicability.

Longer-term data from an 8-week initial trial with a 26-week extension phase (Diabetes Obes Metab, 2025) evaluating Omnipod 5 reported sustained HbA1c reductions (mean decrease 1.6%) and increased TIR by over 22%, highlighting the durability of AID benefits. Importantly, total daily insulin dosage and body mass index remained stable, indicating efficiency without weight gain or increased hypoglycemia.

Role of Continuous Glucose Monitoring and Lifestyle Interventions

Interventional studies emphasize the additive value of CGM in non–insulin-dependent T2DM patients improving glycemic metrics through empowered food and lifestyle choices (Diabetes Technol Ther, 2025). These findings suggest that CGM, a critical component of AID systems, may independently promote behavior modification. A data-driven understanding of T2DM heterogeneity using innovative phenotype mapping (Diabetes, 2025) reveals differential responses to dietary versus exercise interventions, informing personalized management that can integrate with AID technology to optimize outcomes.

Digital Health and Clinical Decision Support Integration

Innovations in digital clinical decision support and individualized lifestyle coaching (Nutrients, 2025) have been evaluated in cluster-randomized trials showing promising effects on cardiovascular risk factors among T2DM patients. Such tools offer potential complementary strategies to enhance pharmacologic diabetes care, and their integration with AID systems could personalize insulin titration and lifestyle management synergistically.

Expert Commentary

The accumulating RCT evidence firmly positions AID as a viable, effective, and safe modality for insulin-treated T2DM. Unlike T1DM, T2DM poses unique challenges due to its heterogeneity and often older patient demographics. The demonstrated HbA1c reductions (~0.6–0.8%) and TIR improvements (>14–20 percentage points) in RCTs are clinically meaningful and align with reductions shown to impact microvascular outcomes. The low incidence of hypoglycemia observed is notable given concerns about intensified insulin regimens in this population.

Potential limitations include relatively short trial durations, which necessitate further research into long-term efficacy, adherence, and safety, especially in real-world diverse clinical settings. Furthermore, cost-effectiveness analyses and health equity considerations are crucial, as socioeconomic disparities can affect access and uptake of diabetes technologies.

Mechanistically, AID systems capitalize on closed-loop algorithms that adjust basal insulin delivery in real time based on CGM readings, reducing glucose variability and hyperglycemia duration. This technology complements the advances in pharmacotherapy (e.g., GLP-1RAs, SGLT-2is) and lifestyle modifications. The future of T2DM management may involve integrative models combining AID systems, digital health coaching, shared decision-making aids, and anti-inflammatory nutritional strategies (e.g., omega-3 fatty acids) to target multifaceted pathophysiology.

Conclusion

Recent high-quality randomized trials provide compelling evidence that automated insulin delivery systems significantly improve glycemic control in adults with insulin-treated type 2 diabetes, reducing HbA1c and increasing time spent in target glucose ranges without increasing hypoglycemia risk. Sustained benefits over longer durations further support their clinical utility. Emerging data also suggest that integration of AID with tailored lifestyle interventions and digital decision supports may optimize individualized diabetes management. Future research should focus on real-world implementation, cost-effectiveness, equity in access, and long-term outcomes including complications reduction.

References

  • Kudva YC, Raghinaru D, Lum JW, et al; 2IQP Study Group. A Randomized Trial of Automated Insulin Delivery in Type 2 Diabetes. N Engl J Med. 2025 May 8;392(18):1801-1812. doi:10.1056/NEJMoa2415948. PMID: 40105270.
  • Zisser H, Michaels J, Lum JW, et al. Glycaemic outcomes in adults with type 2 diabetes over 34 weeks with the Omnipod® 5 Automated Insulin Delivery System. Diabetes Obes Metab. 2025 Jan;27(1):143-154. doi:10.1111/dom.15993. PMID: 39382001.
  • Bergenstal RM, Klonoff DC, Garg SK, et al. Automated Insulin Delivery in Adults With Type 2 Diabetes: A Nonrandomized Clinical Trial. JAMA Netw Open. 2025 Feb 3;8(2):e2459348. doi:10.1001/jamanetworkopen.2024.59348. PMID: 39951268.
  • Miller KM, McCall A, Shah VN, et al. A Randomized Controlled Trial Using Continuous Glucose Monitoring to Guide Food Choices and Diabetes Self-Care in People with Type 2 Diabetes not Taking Insulin. Diabetes Technol Ther. 2025 Apr;27(4):261-270. doi:10.1089/dia.2024.0579. PMID: 39757879.
  • Xie H, Berndt S, Jiang X, et al. Heterogeneity in Phenotype and Early Metabolic Response to Lifestyle Interventions in Type 2 Diabetes in China Using a Tree-Like Representation. Diabetes. 2025 Sep 4:db250197. doi:10.2337/db25-0197. PMID: 40906542.
  • Ebert B, Westergaard M, Bøgelund M, et al. Protocol for the Digital, Individualized, and Collaborative Treatment of Type 2 Diabetes in General Practice Based on Decision Aid (DICTA)-A Randomized Controlled Trial. Nutrients. 2025 Jul 30;17(15):2494. doi:10.3390/nu17152494. PMID: 40806079.

胰岛素治疗2型糖尿病中的自动化胰岛素输送:随机对照试验证据和临床意义的全面综述

亮点

  • 自动化胰岛素输送(AID)系统在胰岛素治疗的2型糖尿病患者中显著改善了血糖控制,与传统的胰岛素输送结合连续葡萄糖监测(CGM)相比。
  • 随机对照试验显示,HbA1c显著降低(约0.6–0.8%),且目标范围内时间(TIR)显著增加,而低血糖风险未增加。
  • 长期扩展研究显示持续的血糖益处和安全性,支持将AID系统整合到2型糖尿病管理中。
  • 纳入以患者为中心的数字工具和共享决策可能进一步优化治疗依从性和结果。

背景

2型糖尿病(T2DM)影响全球数百万人,其中相当一部分患者因进行性的β细胞功能衰竭和恶化的血糖控制需要胰岛素治疗。有效的安全胰岛素输送对于减轻高血糖相关并发症至关重要。尽管自动化胰岛素输送(AID)系统通过结合胰岛素泵、实时CGM和算法驱动的剂量调整,在1型糖尿病管理中取得了革命性进展,但其在胰岛素治疗的2型糖尿病中的作用尚不明确。鉴于2型糖尿病特有的胰岛素抵抗和β细胞功能障碍,以及通常较老且更为异质的患者群体,来自随机对照试验(RCT)的有力临床证据对于指导采用至关重要。本综述综合了当前关于AID在胰岛素治疗的2型糖尿病中的RCT证据,并整合了补充研究,强调生活方式干预和数字工具与技术驱动的胰岛素管理的交叉点。

关键内容

胰岛素治疗2型糖尿病中的自动化胰岛素输送随机对照试验

Kudva等人(NEJM, 2025)进行的一项多中心、随机、对照13周试验,招募了319名胰岛素治疗的成年2型糖尿病患者,按2:1的比例随机分配到AID组和对照组,两组均使用CGM。AID组的平均HbA1c下降了0.9个百分点(从基线8.2%降至7.3%),而对照组下降了0.3个百分点(从8.1%降至7.7%),调整后的平均差异为-0.6个百分点(95% CI, -0.8至-0.4;P<0.001)。AID组的目标血糖范围内时间(70–180 mg/dL)增加了16个百分点(从48%增至64%),而对照组仅增加了1个百分点(从51%增至52%;P<0.001)。所有与高血糖相关的CGM指标均有利于AID,而低血糖率保持较低且无显著组间差异。这些发现强调了AID在该人群中安全地增强血糖结局的潜力。

一项补充的单臂前瞻性试验(JAMA Netw Open, 2025)评估了Omnipod 5 AID系统在305名多样化的胰岛素治疗2型糖尿病成人中的效果,证实了这些结果,13周内平均HbA1c降低了0.8%。该研究包括了大量种族和族裔少数群体、每日多次注射(MDI)、仅基础胰岛素使用者以及同时使用抗糖尿病药物(GLP-1受体激动剂和SGLT-2抑制剂)的患者,显示了亚组间的一致疗效。TIR提高了20个百分点,而低血糖事件或糖尿病酮症酸中毒的发生率没有增加,支持了AID的安全性和广泛适用性。

来自8周初始试验和26周扩展期的长期数据(Diabetes Obes Metab, 2025)评估了Omnipod 5,报告了持续的HbA1c降低(平均减少1.6%)和TIR增加超过22%,突显了AID益处的持久性。重要的是,每日总胰岛素剂量和体重指数保持稳定,表明效率提高而没有体重增加或低血糖增加。

连续葡萄糖监测和生活方式干预的作用

干预研究强调了CGM在非胰岛素依赖的2型糖尿病患者中通过赋能的食物和生活方式选择来改善血糖指标的附加价值(Diabetes Technol Ther, 2025)。这些发现表明,作为AID系统的关键组成部分,CGM可以独立促进行为改变。创新的表型映射(Diabetes, 2025)揭示了2型糖尿病异质性对饮食与运动干预的不同反应,为个性化管理提供了信息,可以与AID技术结合以优化结果。

数字健康和临床决策支持的整合

数字临床决策支持和个体化生活方式指导的创新(Nutrients, 2025)已在集群随机试验中进行了评估,显示出对2型糖尿病患者心血管风险因素的有希望的影响。这些工具提供了潜在的互补策略,以增强药理学糖尿病护理,并且与AID系统的整合可以协同个性化胰岛素滴定和生活方式管理。

专家评论

累积的RCT证据坚定地确立了AID作为胰岛素治疗2型糖尿病的有效、安全的模式。与1型糖尿病不同,2型糖尿病由于其异质性和通常较老的患者人口统计特征,提出了独特的挑战。RCT中显示的HbA1c降低(约0.6–0.8%)和TIR改善(>14–20个百分点)具有临床意义,与已知可影响微血管结局的降低一致。观察到的低血糖发生率较低,这一点特别值得注意,因为对该人群强化胰岛素方案的担忧一直存在。

潜在的局限性包括相对较短的试验持续时间,这需要进一步研究长期疗效、依从性和安全性,特别是在现实世界中多样化临床环境中。此外,成本效益分析和健康公平性考虑也是关键,因为社会经济差异可能影响糖尿病技术的获取和采用。

机制上,AID系统利用闭环算法根据CGM读数实时调整基础胰岛素输送,减少血糖波动和高血糖持续时间。这项技术补充了药理学(如GLP-1RAs、SGLT-2is)和生活方式改变的进步。2型糖尿病管理的未来可能涉及整合AID系统、数字健康指导、共享决策辅助工具和抗炎营养策略(如ω-3脂肪酸),以针对多方面的病理生理。

结论

最近的高质量随机试验提供了令人信服的证据,证明自动化胰岛素输送系统显著改善了胰岛素治疗的2型糖尿病成人的血糖控制,减少了HbA1c并增加了目标血糖范围内的停留时间,而不会增加低血糖风险。更长时间的持续益处进一步支持了其临床效用。新兴数据还表明,将AID与量身定制的生活方式干预和数字决策支持相结合,可以优化个体化的糖尿病管理。未来的研究应重点关注实际实施、成本效益、获取公平性和长期结果,包括并发症减少。

参考文献

  • Kudva YC, Raghinaru D, Lum JW, et al; 2IQP Study Group. A Randomized Trial of Automated Insulin Delivery in Type 2 Diabetes. N Engl J Med. 2025 May 8;392(18):1801-1812. doi:10.1056/NEJMoa2415948. PMID: 40105270.
  • Zisser H, Michaels J, Lum JW, et al. Glycaemic outcomes in adults with type 2 diabetes over 34 weeks with the Omnipod® 5 Automated Insulin Delivery System. Diabetes Obes Metab. 2025 Jan;27(1):143-154. doi:10.1111/dom.15993. PMID: 39382001.
  • Bergenstal RM, Klonoff DC, Garg SK, et al. Automated Insulin Delivery in Adults With Type 2 Diabetes: A Nonrandomized Clinical Trial. JAMA Netw Open. 2025 Feb 3;8(2):e2459348. doi:10.1001/jamanetworkopen.2024.59348. PMID: 39951268.
  • Miller KM, McCall A, Shah VN, et al. A Randomized Controlled Trial Using Continuous Glucose Monitoring to Guide Food Choices and Diabetes Self-Care in People with Type 2 Diabetes not Taking Insulin. Diabetes Technol Ther. 2025 Apr;27(4):261-270. doi:10.1089/dia.2024.0579. PMID: 39757879.
  • Xie H, Berndt S, Jiang X, et al. Heterogeneity in Phenotype and Early Metabolic Response to Lifestyle Interventions in Type 2 Diabetes in China Using a Tree-Like Representation. Diabetes. 2025 Sep 4:db250197. doi:10.2337/db25-0197. PMID: 40906542.
  • Ebert B, Westergaard M, Bøgelund M, et al. Protocol for the Digital, Individualized, and Collaborative Treatment of Type 2 Diabetes in General Practice Based on Decision Aid (DICTA)-A Randomized Controlled Trial. Nutrients. 2025 Jul 30;17(15):2494. doi:10.3390/nu17152494. PMID: 40806079.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *