Clinical Decision Tool Integrating Decision Tree, Point-of-Care CRP Testing, and Safety Netting to Optimize Antibiotic Use in Acutely Ill Children: Evidence from the ARON Pragmatic Trial and Contextual Literature

Clinical Decision Tool Integrating Decision Tree, Point-of-Care CRP Testing, and Safety Netting to Optimize Antibiotic Use in Acutely Ill Children: Evidence from the ARON Pragmatic Trial and Contextual Literature

Highlights

  • The ARON cluster-randomised trial (2021–2023) showed a 27% relative reduction in antibiotic prescribing at index consultation among acutely ill children using a clinical decision tool integrating a decision tree, point-of-care C-reactive protein (CRP) testing, and safety-netting advice.
  • The intervention did not prolong recovery time, increase additional testing, follow-up visits, or antibiotic prescribing after index consultation, demonstrating non-inferiority for key safety and healthcare utilization outcomes.
  • Qualitative data highlighted the utility of CRP POCT in reducing diagnostic uncertainty and managing parental expectations, emphasizing clinician and caregiver acceptability.
  • Prior evidence supports CRP POCT’s role in reassuring physicians, especially with normal CRP levels discouraging antibiotic use, though benefits are enhanced with clinical guidance and safety-netting.

Background

Antimicrobial resistance (AMR) poses a critical global health threat exacerbated by inappropriate antibiotic prescribing, particularly in pediatric ambulatory care where many children presenting with acute infections receive antibiotics unnecessarily. Children frequently present to primary care with self-limiting conditions, often viral, for which antibiotics provide no clinical benefit but risk resistance development and adverse effects. Strategies to optimize antibiotic use include clinical decision tools combining risk stratification algorithms, biomarkers like CRP tested at point-of-care, and clear safety-netting advice to guide watchful waiting. Belgium’s ARON study rigorously evaluated such an intervention’s effectiveness and safety in primary care settings.

Key Content

1. The ARON Trial: Design and Principal Findings

The ARON (Antibiotic Prescribing Rate after Optimal Near-patient Testing) trial was a pragmatic, unblinded, cluster-randomised controlled trial conducted in Belgian primary care between February 2021 and December 2023 (ClinicalTrials.gov NCT04470518). Eligible general practitioner and community pediatrician practices not already using CRP POCT were randomized 1:1 to implement a clinical decision tool or to continue usual care.

The intervention comprised three components: 1) a validated clinical decision tree to stratify infection severity; 2) guided use of point-of-care CRP testing to support clinical judgment; and 3) safety-netting advice to caregivers addressing illness progression and when to seek further care. Children aged 6 months to 12 years presenting with acute illness were consecutively recruited and followed for 30 days.

Primary outcomes were antibiotic prescribing at index consultation (superiority tested) and clinical recovery time, additional testing, follow-up visits, and antibiotic prescribing after index consultation (non-inferiority tested with predefined margins). Analysis accounted for clustering and adjusted for age.

Among 6750 participants analyzed (2988 intervention, 3762 control), antibiotic prescribing at index consultation was significantly reduced (16% vs. 22%; adjusted odds ratio 0.72, 95% CI 0.55-0.94; p=0.017). Recovery time (-0.1 day, 95% CI -0.5 to 0.3) and secondary outcomes were non-inferior. Serious adverse events occurred less frequently in the intervention arm and none were attributed to the intervention. No deaths occurred.

2. Complementary Qualitative Insights on CRP POCT and Safety-Netting

A nested process evaluation involving interviews with general practitioners and parents in the intervention arm (JAC Antimicrobial Resistance, 2024) elucidated behavioral mechanisms. Themes identified included CRP POCT supporting diagnostic confidence, modulating antibiotic prescriptions by alleviating parental pressure, and safety-netting enhancing parental self-management and reassurance.

Interestingly, intermediate CRP values were sometimes interpreted as indicators of possible serious infection, diverging from protocol intentions as a rule-out tool. The parental information booklet was valued as both an educational and emotional support tool.

3. CRP POCT in Pediatric Primary Care: Context and Prior Evidence

Earlier randomized controlled studies have demonstrated that use of CRP POCT alone without clinical algorithms does not reliably reduce antibiotic prescribing in children (Arch Dis Child 2016; Scand J Prim Health Care 2018). However, when used with clear clinical guidance and safety-netting strategies, CRP testing can influence physician decision-making by reducing diagnostic uncertainty and encouraging antibiotic withholding, especially when CRP levels are low.

A large RCT in Latvia demonstrated regional variability in antibiotic prescribing and CRP testing use; educational interventions combined with CRP POCT reduced prescribing significantly only in rural settings. Multiplex PCR testing for respiratory pathogens, while informative, did not significantly reduce antibiotic use in pediatric emergency care in Finland, underscoring the need for targeted biomarker-guided approaches optimized for primary care contexts.

4. Mechanistic and Translational Implications

CRP is an acute-phase reactant produced in response to pro-inflammatory cytokines, reflecting bacterial infection severity. Sensitive, rapid POCT facilitates real-time risk stratification, enabling early identification of children unlikely to benefit from antibiotics. Integration into decision trees contextualizes CRP values within clinical assessment, preventing overreliance on isolated biomarker thresholds and reducing false positives.

Safety-netting is an essential adjunct translating diagnostic certainty into safe care pathways, empowering parents to monitor illness progression and return if necessary, mitigating risks of delayed serious illness recognition.

Expert Commentary

The ARON trial provides robust evidence supporting multidimensional clinical decision tools that combine physician judgment, biomarker use, and caregiver communication to safely reduce unnecessary antibiotic exposure in children presenting to primary care. Compared with prior studies assessing isolated biomarker tests, ARON’s pragmatic design and large sample size enhance external validity.

Limitations include unblinded design and potential practice-level variations in intervention fidelity. The finding that intermediate CRP levels were sometimes misinterpreted suggests ongoing needs for clinician education and algorithm refinement.

Current pediatric stewardship guidelines increasingly recognize POCT combined with clinical algorithms as effective means to optimize antibiotic use. Yet real-world implementation must address barriers such as clinician trust, workflow integration, and parental education.

Future research should address long-term impact on antimicrobial resistance patterns, cost-effectiveness analyses, and adaptation to different healthcare settings. Additionally, exploration of adjunctive molecular diagnostics might tailor stewardship more precisely, although their added value over CRP-based tools requires confirmation.

Conclusion

The ARON trial convincingly demonstrates that a clinical decision tool integrating a validated decision tree, point-of-care CRP testing, and safety-netting advice reduces antibiotic prescribing rates in acutely ill children without compromising recovery or safety, supporting broader dissemination in primary care.

This composite approach mitigates diagnostic uncertainty and addresses parental concerns, key drivers of antibiotic overprescribing. Coupled with qualitative evidence underscoring acceptability and behavioral mechanisms, the data provide a strong foundation for clinical guideline incorporation and health policy initiatives to combat pediatric antibiotic overuse in ambulatory care.

Ongoing education to optimize test interpretation and implementation fidelity will be critical for sustained impact.

References

  • Verbakel JY, Burvenich R, D’hulster E, et al. A clinical decision tool including a decision tree, point-of-care testing of CRP, and safety-netting advice to guide antibiotic prescribing in acutely ill children in primary care in Belgium (ARON): a pragmatic, cluster-randomised, controlled trial. Lancet. 2025 Sep 25:S0140-6736(25)01239-5. doi:10.1016/S0140-6736(25)01239-5. PMID:41016406.
  • Burkens O, Verschuere S, Verbakel JY. Behavioural impact of antibiotic stewardship in children in primary care: interviews with GPs and parents. JAC Antimicrob Resist. 2024;6(6):dlae207. doi:10.1093/jacamr/dlae207. PMID:39691791.
  • Straupe I, et al. Impact of educational training and C-reactive protein point-of-care testing on antibiotic prescribing in rural and urban family physician practices in Latvia: randomized controlled intervention study. BMC Pediatr. 2022;22(1):556. doi:10.1186/s12887-022-03608-4. PMID:36127630.
  • Toivonen L, et al. Effect of Point-of-Care Testing for Respiratory Pathogens on Antibiotic Use in Children: A Randomized Clinical Trial. JAMA Netw Open. 2022;5(6):e2216162. doi:10.1001/jamanetworkopen.2022.16162. PMID:35679047.
  • Verbakel JY, et al. Antibiotic prescribing rate after optimal near-patient C-reactive protein testing in acutely ill children presenting to ambulatory care (ARON project): protocol for a cluster-randomized pragmatic trial. BMJ Open. 2022;12(1):e058912. doi:10.1136/bmjopen-2021-058912. PMID:34980633.
  • Bruins Slot KM, et al. Point-of-care CRP matters: normal CRP levels reduce immediate antibiotic prescribing for acutely ill children in primary care: a cluster randomized controlled trial. Scand J Prim Health Care. 2018;36(4):423-436. doi:10.1080/02813432.2018.1529900. PMID:30354904.
  • Van den Bruel A, et al. C-reactive protein point-of-care testing in acutely ill children: a mixed methods study in primary care. Arch Dis Child. 2016;101(4):382-385. doi:10.1136/archdischild-2015-309228. PMID:26757989.
  • Huttner B, Goossens H, Verheij T, Harbarth S. Characteristics and Outcomes of Public Campaigns Aimed at Improving the Use of Antibiotics in Outpatient Care. Lancet Infect Dis. 2010;10(1):17-31. doi:10.1016/s1473-3099(09)70305-2. PMID:20004463.

结合决策树、即时CRP检测和安全网以优化急性病儿童抗生素使用的临床决策工具:来自ARON实用试验和背景文献的证据

亮点

  • ARON群组随机试验(2021-2023年)显示,在使用结合决策树、即时C反应蛋白(CRP)检测和安全网建议的临床决策工具后,急性病儿童在初次就诊时的抗生素处方率相对减少了27%。
  • 干预措施没有延长恢复时间,也没有增加额外检查、随访次数或初次就诊后的抗生素处方,证明了关键安全性和医疗资源利用结果的非劣效性。
  • 定性数据强调了CRP即时检测在减少诊断不确定性管理和家长期望方面的实用性,突出了医生和护理人员的接受度。
  • 先前的证据支持CRP即时检测在让医生安心方面的作用,特别是正常CRP水平会减少抗生素使用,尽管在有临床指导和安全网的情况下效果更佳。

背景

抗菌药物耐药性(AMR)是一个全球性的健康威胁,主要由不适当的抗生素处方加剧,尤其是在儿科门诊中,许多因急性感染就诊的儿童被不必要地开具了抗生素。儿童经常因自限性疾病(通常是病毒性)就诊,而这些疾病使用抗生素不仅没有临床益处,还会增加耐药性和不良反应的风险。优化抗生素使用的策略包括结合风险分层算法、生物标志物(如CRP即时检测)和明确的安全网建议来指导观察等待。比利时的ARON研究严格评估了这种干预措施在初级保健环境中的有效性和安全性。

主要内容

1. ARON试验:设计和主要发现

ARON(Optimal Near-patient Testing后的抗生素处方率)试验是一项实用的、未设盲的、群组随机对照试验,于2021年2月至2023年12月在比利时初级保健机构进行(ClinicalTrials.gov NCT04470518)。符合条件的未使用CRP即时检测的一般实践和社区儿科诊所按1:1的比例随机分配实施临床决策工具或继续常规护理。

干预措施包括三个部分:1)验证过的临床决策树,用于分层感染严重程度;2)指导使用即时CRP检测以支持临床判断;3)向护理人员提供安全网建议,涉及病情进展和何时寻求进一步护理。年龄在6个月至12岁的急性病儿童连续招募并随访30天。

主要结局指标是在初次就诊时的抗生素处方率(测试优效性)和临床恢复时间、额外检查、随访次数以及初次就诊后的抗生素处方率(在预定义的非劣效性范围内测试)。分析考虑了聚类效应并调整了年龄。

在6750名参与者中(2988名干预组,3762名对照组),初次就诊时的抗生素处方率显著降低(16% vs. 22%;调整后的比值比0.72,95% CI 0.55-0.94;p=0.017)。恢复时间(-0.1天,95% CI -0.5至0.3)和次要结局指标均为非劣效性。干预组发生严重不良事件的频率较低,且无一例归因于干预措施。无死亡病例。

2. 关于CRP即时检测和安全网的补充定性见解

一项嵌套的过程评估(JAC Antimicrobial Resistance, 2024)通过采访干预组的一般医生和家长,阐明了行为机制。主题包括CRP即时检测支持诊断信心、通过减轻家长压力调节抗生素处方,以及安全网增强家长自我管理和安心感。

有趣的是,有时中间CRP值被解释为可能的严重感染指标,这与作为排除工具的协议意图相悖。家长信息手册被视为教育和情感支持工具。

3. CRP即时检测在儿科初级保健中的背景和先前证据

早期的随机对照研究表明,单独使用CRP即时检测而不结合临床算法并不能可靠地减少儿童的抗生素处方(Arch Dis Child 2016; Scand J Prim Health Care 2018)。然而,当结合明确的临床指导和安全网策略时,CRP检测可以通过减少诊断不确定性和鼓励抗生素停用(特别是在CRP水平较低时)来影响医生的决策。

拉脱维亚的一项大型RCT显示,抗生素处方和CRP检测使用的区域差异;结合教育干预和CRP即时检测仅在农村地区显著减少了处方。芬兰的一项多路PCR检测呼吸道病原体的研究虽然提供了信息,但并未显著减少儿科急诊中的抗生素使用,强调了需要针对初级保健环境优化生物标志物引导的方法。

4. 机制和转化意义

CRP是一种急性期反应物,由促炎细胞因子诱导产生,反映了细菌感染的严重程度。敏感且快速的即时检测有助于实时风险分层,能够早期识别不太可能从抗生素中受益的儿童。将其整合到决策树中可以将CRP值置于临床评估的背景下,防止过度依赖孤立的生物标志物阈值,减少假阳性。

安全网是将诊断确定性转化为安全护理路径的重要辅助手段,使家长能够监测病情进展并在必要时返回医院,从而减少延迟识别严重疾病的危险。

专家评论

ARON试验提供了强有力的证据,支持结合医生判断、生物标志物使用和护理沟通的多维度临床决策工具,以安全减少儿科初级保健中不必要的抗生素暴露。与评估单一生物标志物测试的先前研究相比,ARON的实用设计和大样本量增强了外部有效性。

局限性包括未设盲的设计和潜在的干预措施在实践层面的变异。中间CRP水平有时被误读的发现表明需要持续进行医生教育和算法改进。

当前的儿科管理指南越来越多地认识到结合临床算法的即时检测是优化抗生素使用的有效手段。然而,实际应用必须解决医生信任、工作流程整合和家长教育等障碍。

未来的研究应关注对抗菌药物耐药模式的长期影响、成本效益分析以及在不同医疗环境中的适应。此外,探索辅助分子诊断可能会更精确地定制管理策略,尽管其相对于基于CRP的工具的附加价值需要确认。

结论

ARON试验令人信服地证明,结合验证过的决策树、即时CRP检测和安全网建议的临床决策工具可以在不影响恢复或安全的情况下减少急性病儿童的抗生素处方率,支持在初级保健中的广泛推广。

这种综合方法减少了诊断不确定性和解决了家长的担忧,这是抗生素过度处方的主要驱动因素。结合定性证据强调可接受性和行为机制,这些数据为临床指南纳入和卫生政策举措提供了坚实的基础,以应对儿科门诊中的抗生素过度使用。

持续的教育以优化测试解读和实施保真度将是实现持久影响的关键。

参考文献

  • Verbakel JY, Burvenich R, D’hulster E, 等. 结合决策树、即时CRP检测和安全网建议以指导比利时初级保健中急性病儿童的抗生素处方(ARON):一项实用的、群组随机对照试验. Lancet. 2025 Sep 25:S0140-6736(25)01239-5. doi:10.1016/S0140-6736(25)01239-5. PMID:41016406.
  • Burkens O, Verschuere S, Verbakel JY. 抗生素管理对儿科初级保健中行为的影响:对医生和家长的访谈. JAC Antimicrob Resist. 2024;6(6):dlae207. doi:10.1093/jacamr/dlae207. PMID:39691791.
  • Straupe I, 等. 教育培训和C反应蛋白即时检测对拉脱维亚城乡家庭医生实践中抗生素处方的影响:随机对照干预研究. BMC Pediatr. 2022;22(1):556. doi:10.1186/s12887-022-03608-4. PMID:36127630.
  • Toivonen L, 等. 即时检测呼吸道病原体对儿童抗生素使用的影响:随机临床试验. JAMA Netw Open. 2022;5(6):e2216162. doi:10.1001/jamanetworkopen.2022.16162. PMID:35679047.
  • Verbakel JY, 等. 优化急性病儿童门诊护理中近患者C反应蛋白检测后的抗生素处方率(ARON项目):实用群组随机试验方案. BMJ Open. 2022;12(1):e058912. doi:10.1136/bmjopen-2021-058912. PMID:34980633.
  • Bruins Slot KM, 等. 即时CRP检测很重要:正常CRP水平减少了急性病儿童初级保健中的立即抗生素处方:群组随机对照试验. Scand J Prim Health Care. 2018;36(4):423-436. doi:10.1080/02813432.2018.1529900. PMID:30354904.
  • Van den Bruel A, 等. 急性病儿童中的即时CRP检测:初级保健中的混合方法研究. Arch Dis Child. 2016;101(4):382-385. doi:10.1136/archdischild-2015-309228. PMID:26757989.
  • Huttner B, Goossens H, Verheij T, Harbarth S. 针对改善门诊护理中抗生素使用的公共宣传活动的特点和结果. Lancet Infect Dis. 2010;10(1):17-31. doi:10.1016/s1473-3099(09)70305-2. PMID:20004463.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *