自动化闭环通气与常规协议化通气在重症成人中的效果:全面证据综述

自动化闭环通气与常规协议化通气在重症成人中的效果:全面证据综述

亮点

  • 如INTELLiVENT-ASV等自动化闭环通气系统根据患者生理状况连续调整通气设置,旨在实现优化的肺保护性通气。
  • 在一项国际随机对照试验中,早期使用自动化闭环通气并未显著增加重症成人在第28天时的无通气日数,与常规协议化通气相比。
  • 自动化通气显示了通气质量的改善和更安全的安全性特征,减少了严重高碳酸血症和低氧血症的发生率,以及较少需要救援治疗。
  • 次要益处包括减少手动通气调整次数,提高护士和医生的接受度,突显了潜在的工作流程和工作负担优势。

背景

机械通气是呼吸衰竭重症患者支持治疗的基石。尽管取得了进展,但与通气相关的肺损伤(VALI)仍然是一个主要问题,促使采用肺保护策略。常规通气通常需要临床医生根据协议和间歇监测频繁调整,这可能因患者个体差异和资源限制而受到挑战。

自动化闭环通气平台如INTELLiVENT自适应支持通气(ASV)利用连续的生理反馈——如呼末二氧化碳、血氧饱和度和呼吸力学——动态调整通气参数,包括潮气量、呼吸频率、吸入氧气分数(FiO2)和呼气末正压(PEEP)。这种技术的前景在于提供个性化的通气,优化肺保护和气体交换,可能减少并发症并改善结果。然而,直到最近,关于患者中心临床终点改善的有力证据仍然有限。

关键内容

近期关键随机临床试验(RCT)证据

ACTiVE研究者在荷兰和瑞士的七个ICU进行了多中心国际RCT,纳入了1514名在过去一小时内开始侵入性机械通气且预计至少需要通气24小时的成人(Sinnige等,JAMA 2025)。患者按1:1随机分配接受自动化闭环通气(INTELLiVENT-ASV,n=602)或常规协议化通气(n=599),两组均遵循标准化镇静和撤机协议。

主要结局是在28天内无通气日数,定义为存活且无需侵入性通气的天数。次要结局包括死亡率、幸存者的通气持续时间、ICU和住院时间、通气质量,以及安全性结局如低氧血症、高碳酸血症和救援治疗(俯卧位、复张操作、支气管镜检查)的使用。

在分析的1201名患者中,中位无通气日数没有显著差异:自动化组16.7天(IQR 0.0–26.1),常规组16.3天(IQR 0.0–26.5)(OR 0.91,95% CI 0.77–1.06;P=0.23)。幸存者的死亡率和通气持续时间也相当。然而,闭环通气的通气质量指标有所改善,伴随严重高碳酸血症和低氧血症的发生次数减少。虽然自动化组需要救援治疗的患者较少(尤其是俯卧位),但在多次比较调整后没有统计学意义。

相关研究的支持证据

此前较小的RCT和交叉研究表明,闭环通气模式在ICU患者管理中具有优势。例如,研究表明INTELLiVENT-ASV减少了手动通气设置调整,降低了工作人员工作负担,并改善了潮气量和血氧饱和度维持等参数(Ochin等,Minerva Anestesiol,2018;Morin等,Intensive Care Med,2013)。

在特定人群如心脏手术后患者的额外比较研究中表明,完全自动化通气可以比常规协议化通气更一致和安全地维持通气在最佳范围内,减少临床干预次数(Fritsch等,Intensive Care Med,2013)。

此外,自动化闭环氧调节系统在各种环境中(包括新生儿和不同通气模式下的成人患者)提高了在目标血氧饱和度范围内的时间,减少了低氧血症和高氧血症的发生,这对于降低肺损伤风险具有临床意义(Pillay等,Arch Dis Child Fetal Neonatal Ed,2025;Wilkinson等,BMJ Open Respir Res,2024)。

撤机和通气管理

如ASV等闭环通气模式通过根据自主呼吸努力调整支持来支持撤机协议。慢性阻塞性肺疾病(COPD)患者和外科ICU人群的研究表明,与传统压力支持模式相比,自适应支持通气可能缩短撤机时间,尽管证据因患者群体和试验设计而异(Bugedo等,Eur Respir J,2011;Freixas等,Am J Respir Crit Care Med,2012)。

机制见解和安全性考虑

闭环系统主要通过优化通气参数以减少传递给肺和肺泡的机械功率和肺泡应变来运作,这是导致通气诱导肺损伤(VILI)的关键决定因素。动物和人类研究表明,自适应支持通气可减少肺泡应变和肺损伤标志物,与常规容量控制通气相比(Lin等,Int J Mol Sci,2019)。

值得注意的是,最近的试验表明,自动化系统能够保持通气变量的稳定性,并且安全性特征与常规通气一致,有证据表明严重低氧血症和高碳酸血症的发生次数较少。

专家评论

2025年ACTiVE试验代表了在多样化重症成人人群中大规模评估自动化闭环通气的重大进展。尽管主要临床终点无通气日数没有显著改善,但该试验验证了自动化系统的安全性和操作优势。通气质量的改善和严重气体交换异常的减少可能转化为长期益处,这些益处在28天通气指标中未能充分体现。

从临床实施的角度来看,自动化通气减少手动通气调整的潜力可以减轻护理人员的工作负担和通气管理的变异性,特别是在资源有限或高急性护理环境中提高一致性。

然而,这些系统目前尚未在成人重症监护人群中证明有生存率或住院时间的益处。患者异质性、疾病严重程度和机构实践的差异可能需要在临床医生监督下整合自动化模式。

进一步的研究应阐明最有可能受益的患者亚群——例如,被动通气患者与主动通气患者,或患有急性呼吸窘迫综合征的患者。此外,具有更长时间随访和健康相关生活质量终点的试验可能捕捉到优化通气在急性生存之外的优势。

与闭环氧控制、镇静和血流动力学管理系统的集成可以提供全面的自动化护理平台,改善多系统结局。

闭环系统的生物学原理基于实时自适应优化呼吸力学和气体交换,减少有害的通气模式,并允许对变化的临床状态进行动态响应,这一原理得到了临床前和临床生理研究的支持。

结论

自动化闭环通气为重症成人提供了一种安全有效的替代常规协议化通气的方法,通气质量得到改善,严重气体交换异常减少。尽管早期使用并未增加第28天时的无通气日数,但操作和安全性优势支持将其纳入ICU实践,可能在工作流程和患者护理一致性方面具有优势。

正在进行的研究应针对自动化算法的改进、与其他闭环支持疗法的集成,以及识别最能从中获得临床益处的患者。

Effectiveness of Automated Closed-Loop Ventilation versus Protocolized Conventional Ventilation in Critically Ill Adults: A Comprehensive Evidence Review

Effectiveness of Automated Closed-Loop Ventilation versus Protocolized Conventional Ventilation in Critically Ill Adults: A Comprehensive Evidence Review

Highlights

  • Automated closed-loop ventilation systems such as INTELLiVENT-ASV continuously adjust ventilator settings based on patient physiology, aiming for optimized lung-protective ventilation.
  • In a landmark international randomized controlled trial, early use of automated closed-loop ventilation did not significantly increase ventilator-free days at day 28 compared to protocolized conventional ventilation in critically ill adults.
  • Automated ventilation demonstrated improved ventilation quality and a more favorable safety profile, with reduced incidences of severe hypercapnia and hypoxemia and less frequent requirement of rescue therapies.
  • Secondary benefits include reduction in manual ventilator adjustments and improved nurse and physician acceptance, highlighting potential workflow and workload advantages.

Background

Mechanical ventilation is a cornerstone supportive therapy in critically ill patients with respiratory failure. Despite advances, ventilator-associated lung injury (VALI) remains a major concern, prompting adoption of lung-protective strategies. Conventional ventilation typically requires frequent clinician adjustments guided by protocols and intermittent monitoring, which may be challenged by patient variability and resource constraints.

Automated closed-loop ventilation platforms such as INTELLiVENT adaptive support ventilation (ASV) utilize continuous physiologic feedback—such as end-tidal CO2, oxygen saturation, and respiratory mechanics—to dynamically titrate ventilator parameters including tidal volume, respiratory rate, fraction of inspired oxygen (FiO2), and positive end-expiratory pressure (PEEP). The promise of such technology lies in providing personalized ventilation optimized for lung protection and gas exchange, potentially reducing complications and improving outcomes. However, robust evidence for improvement in patient-centered clinical endpoints remained limited until recently.

Key Content

Recent Pivotal Randomized Clinical Trial (RCT) Evidence

The ACTiVE investigators conducted a multicenter, international RCT in seven ICUs across the Netherlands and Switzerland, enrolling 1514 adults who had invasive mechanical ventilation initiated within the previous hour and were expected to require ventilation for at least 24 hours (Sinnige et al., JAMA 2025). Patients were randomized 1:1 to receive either automated closed-loop ventilation (INTELLiVENT-ASV, n=602) or protocolized conventional ventilation (n=599), with both arms following standardized sedation and weaning protocols.

The primary outcome was ventilator-free days at 28 days, defined as days alive and free of invasive ventilation. Secondary endpoints included mortality, ventilation duration among survivors, ICU and hospital length of stay, ventilation quality, and safety outcomes such as hypoxemia, hypercapnia, and use of rescue therapies (prone positioning, recruitment maneuvers, bronchoscopy).

Among 1201 patients analyzed, the median ventilator-free days did not differ significantly: 16.7 days (IQR 0.0–26.1) in the automated group versus 16.3 days (IQR 0.0–26.5) in conventional (OR 0.91, 95% CI 0.77–1.06; P=0.23). Mortality and ventilation duration among survivors were also comparable. However, ventilation quality metrics were improved with closed-loop ventilation, accompanied by fewer episodes of severe hypercapnia and hypoxemia. Although fewer patients in the automated group required rescue therapies (notably prone positioning), this was not statistically significant after adjustment for multiple comparisons.

Supporting Evidence from Related Studies

Prior smaller RCTs and crossover studies have highlighted benefits of closed-loop ventilation modes in ICU patient management. For instance, studies indicate that INTELLiVENT-ASV reduces manual ventilator setting adjustments, lowers staff workload, and improves parameters such as tidal volume and oxygen saturation maintenance (Ochin et al., Minerva Anestesiol, 2018; Morin et al., Intensive Care Med, 2013).

Additional comparative studies in specific populations such as post-cardiac surgery patients demonstrate that fully automated ventilation can maintain ventilation within optimal zones more consistently and safely versus protocolized conventional ventilation with fewer clinician interventions (Fritsch et al., Intensive Care Med, 2013).

Moreover, automated closed-loop oxygen titration systems improve the time spent within target oxygen saturation ranges in various settings including neonates and adult patients on different ventilatory modes, reducing episodes of hypo- and hyperoxia which are clinically relevant for lung injury risk mitigation (Pillay et al., Arch Dis Child Fetal Neonatal Ed, 2025; Wilkinson et al., BMJ Open Respir Res, 2024).

Weaning and Ventilation Management

Closed-loop ventilation modes such as ASV also support weaning protocols by adapting support based on spontaneous respiratory effort. Studies in chronic obstructive pulmonary disease (COPD) patients and surgical ICU populations suggest potentially shorter weaning durations with adaptive support ventilation compared to traditional pressure support modes, although evidence varies by patient group and trial design (Bugedo et al., Eur Respir J, 2011; Freixas et al., Am J Respir Crit Care Med, 2012).

Mechanistic Insights and Safety Considerations

Closed-loop systems primarily operate by optimizing ventilator parameters to reduce mechanical power delivered to the lung and alveolar strain, key determinants in ventilator-induced lung injury (VILI). Animal and human studies demonstrate that adaptive support ventilation reduces alveolar strain and lung injury markers compared with conventional volume control ventilation (Lin et al., Int J Mol Sci, 2019).

Notably, recent trials highlight that automated systems maintain stability of ventilation variables and have safety profiles consistent with conventional ventilation, with some evidence of fewer critical episodes of hypoxemia and hypercapnia.

Expert Commentary

The 2025 ACTiVE trial represents a major advance in evaluating automated closed-loop ventilation at scale in diverse critically ill adult populations. Although the primary clinical endpoint of ventilator-free days did not improve significantly, the trial validates safety and operational advantages of automated systems. Improved ventilation quality and reduced severe gas exchange abnormalities may translate into longer-term benefits not fully captured by 28-day ventilation metrics.

From a clinical implementation perspective, automated ventilation’s potential to reduce manual ventilator adjustments can decrease caregiver workload and variability in ventilation management, improving consistency particularly in resource-limited or high-acuity care settings.

However, these systems currently lack demonstrated mortality or length-of-stay benefits in adult critical care populations. Differences in patient heterogeneity, disease severity, and institutional practice may require tailored integration of automated modes complemented by clinician oversight.

Further research should elucidate patient subgroups most likely to benefit—for example, passive versus active ventilatory patients, or those with acute respiratory distress syndrome. Additionally, trials with longer follow-up and incorporation of health-related quality-of-life endpoints may capture advantages of optimized ventilation beyond acute survival.

Integration with closed-loop oxygen control, sedation, and hemodynamic management systems could provide comprehensive automated care platforms improving multi-system outcomes.

The biological rationale for closed-loop systems rests on real-time adaptive optimization of respiratory mechanics and gas exchange, lessening injurious ventilatory patterns and allowing dynamic response to changing clinical states, a principle supported by preclinical and clinical physiologic research.

Conclusion

Automated closed-loop ventilation offers a safe and effective alternative to protocolized conventional ventilation in critically ill adults, with demonstrated improvements in ventilation quality and reduced severe gas exchange abnormalities. While early use does not increase ventilator-free days at 28 days, operational and safety benefits support incorporation into ICU practice, with potential advantages in workflow and patient care consistency.

Ongoing investigations should target refinement of automated algorithms, integration with other closed-loop supportive therapies, and identifying patients who derive the greatest clinical benefit.

References

  • Sinnige JS, Buiteman-Kruizinga LA, Horn J, Paulus F, Schultz MJ, Serpa Neto A; ACTiVE Investigators and the Protective Ventilation Network. Effect of Automated Closed-Loop Ventilation vs Protocolized Conventional Ventilation on Ventilator-Free Days in Critically Ill Adults: A Randomized Clinical Trial. JAMA. 2025 Dec 8;e2524384. doi: 10.1001/jama.2025.24384. PMID: 41361939; PMCID: PMC12687210.
  • Ochin et al. Closed-loop ventilation mode in Intensive Care Unit: a randomized controlled clinical trial comparing the numbers of manual ventilator setting changes. Minerva Anestesiol. 2018 Jan;84(1):58-67. PMID: 28679200.
  • Fritsch et al. Evaluation of fully automated ventilation: a randomized controlled study in post-cardiac surgery patients. Intensive Care Med. 2013 Mar;39(3):463-71. doi: 10.1007/s00134-012-2799-2. PMID: 23338569.
  • Pillay et al. Closed-loop automated oxygen control in preterm ventilated infants: a randomized controlled trial. Arch Dis Child Fetal Neonatal Ed. 2025 Nov;fetalneonatal-2025-329022. doi: 10.1136/archdischild-2025-329022. PMID: 41218846.
  • Lin et al. Adaptive Support Ventilation Attenuates Ventilator Induced Lung Injury: Human and Animal Study. Int J Mol Sci. 2019 Nov 21;20(23):5848. doi: 10.3390/ijms20235848. PMID: 31766467.
  • Bugedo G et al. Adaptive support ventilation for faster weaning in COPD: a randomised controlled trial. Eur Respir J. 2011 Oct;38(4):774-80. doi: 10.1183/09031936.00081510. PMID: 21406514.

Comments

No comments yet. Why don’t you start the discussion?

发表回复