心脏手术中凝血功能障碍出血的治疗:来自FARES-II多中心随机临床试验及相关研究的证据综合

心脏手术中凝血功能障碍出血的治疗:来自FARES-II多中心随机临床试验及相关研究的证据综合

亮点

  • FARES-II是迄今为止规模最大的随机对照试验,显示4F-PCC在心脏手术相关的凝血功能障碍出血中,与冷冻血浆(FP)相比具有更优的止血效果。
  • 使用4F-PCC减少了异体血液制品输注的需求,包括红细胞和血小板,同时表现出良好的安全性,严重不良事件更少,急性肾损伤的发生率更低。
  • 机制研究表明,4F-PCC能够迅速恢复凝血酶生成和凝血因子水平,在术后早期改善止血。
  • 荟萃分析和试点试验进一步证实了PCC相对于FP的临床优势,包括改善实验室凝血参数和减少输血需求,而不会增加血栓栓塞风险。

背景

过度出血仍然是心脏手术的重要并发症之一,且与预后密切相关。在心肺旁路(CPB)后,凝血功能障碍经常发生。传统上,新鲜冰冻血浆(FFP)或冷冻血浆(FP)用于替代凝血因子并止血。然而,FFP输注涉及大量液体,可能加重液体超负荷和输血相关并发症,如输血相关急性肺损伤和右心室衰竭。四因子凝血酶原复合物浓缩剂(4F-PCC)含有高浓度的维生素K依赖性因子II、VII、IX、X以及蛋白C和S,具有快速床边复溶、较小输液量和潜在疗效优势,成为心脏手术后获得性凝血功能障碍出血的有前景的替代疗法。

Figure 1. Enrollment, Randomization, and Treatment of Patients in the Factor Replacement in Surgery II Trial.

关键内容

PCC与FP的证据发展史

自2010年代初以来,研究开始探索PCC作为心脏手术患者的因子替代治疗。初步试点试验(如PROPHESY,2019年;Karkouti等,2021年)确立了其可行性和安全性,显示与FP相比,使用较小体积即可达到相似的止血效果。到2022年,多项随机对照试验(RCTs)和观察性研究表明,PCC可能比FP更有效地减少输血需求并改善实验室凝血指标(Bartoszko等,2022年)。

Table 1. Characteristics of the Study Population and Dosing Details.

Characteristic No. (%) of patients
Prothrombin complex concentrate (n = 213) Frozen plasma (n = 207)
Age, median (IQR), y 67 (58-73) 64 (55-72)
Sex
Female 56 (26.3) 55 (26.6)
Male 157 (73.7) 152 (73.4)
Race
American Indian or Alaska Native 3 (1.4) 0
Asian 20 (9.4) 21 (10.1)
Black or African American 2 (0.9) 3 (1.4)
White 138 (64.8) 137 (66.2)
Othera 50 (23.5) 46 (22.2)
Weight, kg
Mean (SD) 85 (19.3) 84 (19.5)
≤60 19 (8.9) 20 (9.7)
>60 194 (91.1) 187 (90.3)
BMI, mean (SD) 29 (6.0) 28 (5.4)
Past history and comorbiditiesb
NYHA classc n = 207 n = 197
I (Least severe) 64 (30.9) 56 (28.4)
II 82 (39.6) 76 (38.6)
III 43 (20.8) 55 (27.9)
IV (Most severe) 18 (8.7) 10 (5.1)
Myocardial infarction n = 195 n = 194
None 146 (74.9) 146 (75.3)
0-90 d 33 (16.9) 28 (14.4)
>90 d 16 (8.2) 20 (10.3)
Ejection fraction [left ventricle function], % n = 210 n = 206
>50 157 (74.8) 165 (80.1)
31-≤50 48 (22.9) 34 (16.5)
21-30 5 (2.4) 7 (3.4)
Pulmonary artery systolic pressure [pulmonary hypertension] n = 187 n = 177
<30 mm Hg (none) 158 (84.5) 145 (81.9)
31-55 mm Hg (moderate) 20 (10.7) 23 (13.0)
>55 mm Hg (severe) 9 (4.8) 9 (5.1)
Hypertension 144 (67.6) 141 (68.1)
Dyslipidemia 135 (63.4) 133 (64.3)
Congestive heart failure 36 (16.9) 37 (17.9)
Atrial fibrillation 42 (19.7) 52 (25.1)
Diabetes 48 (22.5) 45 (21.7)
Chronic lung disease 25 (11.7) 36 (17.4)
CVA or TIA 14 (6.6) 15 (7.2)
Peripheral vascular disease 8 (3.8) 11 (5.3)
Active endocarditis 8 (3.8) 15 (7.2)
Dialysis preoperative 0 5 (2.4)
Preoperative laboratory values, median (IQR)
Creatinine, mg/dL 0.96 (0.81-1.14) [n = 206] 0.95 (0.81-1.19) [n = 198]
Hemoglobin, g/dL 13.7 (12.1-14.7) 13.6 (11.9-14.6)
Platelet count, ×103/μL 201 (171-242) 199 (163-244)
International normalized ratio 1.1 (1.0-1.2) 1.1 (1.0-1.1)
Surgical factors
Previous cardiac surgery 53 (24.9) 56 (27.1)
Nonelective surgery 36 (16.9) 44 (21.3)
Complex surgeryd 144 (67.6) 152 (73.4)
Proceduree
Aortic valve 110 (51.6) 98 (47.3)
Coronary artery bypass graft surgery 91 (42.7) 86 (41.5)
Ascending aortic 65 (30.5) 61 (29.5)
Mitral valve 48 (22.5) 47 (22.7)
Aortic arch 26 (12.2) 24 (11.6)
Tricuspid valve 18 (8.5) 15 (7.2)
Pulmonary valve 6 (2.8) 7 (3.4)
Descending aortic 4 (1.9) 0
Otherf 69 (32.4) 89 (43.0)
Cardiopulmonary bypass duration, mean (SD), min 171 (76.4) 176 (80.5)
Tranexamic acid (prophylactic)
Patients 178 (83.6) 176 (85.0)
Dose, mean (SD), g 3.4 (1.6) 3.6 (4.0)
Aminocaproic acid (prophylactic)
Patients 30 (14.1) 31 (15.0)
Dose, mean (SD), g 12.1 (5.0) 13.1 (5.5)
Heparin dose, mean (SD), IU 50 343 (20 288) 51 114 (21 474)
Protamine dose, mean (SD), mg 381 (116) [n = 209] 390 (152) [n = 205]
Cell salvage blood collected, mean (SD), mL 1908 (1859) [n = 115] 2111 (2283) [ = 106]
IMP administration details
Doses
1 213 (100) 207 (100)
2g 37 (17.4) 47 (22.7)
Amount of first dose
Mean (SD) 23.9 (4.3) IU/kg 11.8 (2.8) mL/kgg
Median (IQR) 23.7 (21.1-27.0) IU/kg 11.8 (10.0-13.8) mL/kgg
Amount of second dose
Mean (SD) 22.9 (6.3) IU/kg 10.3 (3.8) mL/kgh
Median (IQR) 23.1 (20.1-28.2) IU/kg 10.5 (7.3-13.3) mL/kgg
Time from end of CPB to start of first dose of IMP, median (IQR), min 41 (26-67) 45 (28-69)
Time to complete administration of IMP, median (IQR), min 7 (4-10) 26 (17-45)

Table 2. Efficacy Outcomes in the Primary Analysis Set.

Outcomes No. (%) of patients % Difference (95% CI) Relative risk or LS mean ratio (95% CI) P value
PCC (n = 213) Frozen plasma (n = 207)
Primary outcome
Hemostatic response
Effective 166 (77.9) 125 (60.4) 17.6 (8.7 to 26.4) RR: 0.56 (0.41 to 0.75) <.001
Ineffectivea 47 (22.1) 82 (39.6)
Components for response
Surgical reopening for bleeding 11 (5.2) 15 (7.2) 2.1 (−2.5 to 6.7) RR: 0.71 (0.34 to 1.5) .38
Second dose of IMP 19 (8.9) 40 (19.3) 10.4 (3.8 to 17.0) 0.46 (0.28 to 0.77) .003
Platelets 32 (15.0) 63 (30.4) 15.4 (7.5 to 23.3) 0.49 (0.34 to 0.72) <.001
Fibrinogen concentrate 14 (6.6) 23 (11.1) 4.5 (−0.9 to 10.0) 0.59 (0.31 to 1.12) .11
Cryoprecipitate 6 (2.8) 7 (3.4) 0.6 (−2.8 to 3.9) 0.83 (0.28 to 2.44) .74
Non-IMP PCC 0 14 (6.8) 6.8 (3.3 to 10.2) 0.03 (0.002 to 0.56) .02
Non-IMP frozen plasma 7 (3.3) 7 (3.4) 0.1 (−3.3 to 3.5) 0.97 (0.35 to 2.72) .96
Recombinant activated factor VII 0 9 (4.3) 4.4 (1.6 to 7.1) 0.05 (0.003 to 0.87) .04
Secondary outcomes
Ineffective global hemostatic responseb 56 (26.3) 83/205 (40.5) 14.2 (5.3 to 23.2) RR: 0.65 (0.49 to 0.86) .003
Severe or massive bleedingc 30 (14.1) 57 (27.5) 13.5 (5.8 to 21.1) RR: 0.51 (0.34 to 0.76) .001
Total allogeneic blood product transfusions, LS mean (95% CI), unitsd
≤24 h After cardiopulmonary bypass end
RBC + platelets + frozen plasma [IMP and non-IMP] 6.6 (5.9 to 7.5) 13.8 (12.3 to 15.5) 7.2 (5.4 to 9.0) Ratio: 0.48 (0.41 to 0.57) <.001
RBC + platelets + frozen plasma [non-IMP] 6.6 (5.7 to 7.7) 9.3 (8.0 to 10.8) 2.7 (1.0 to 4.4) Ratio: 0.71 (0.57 to 0.88) .002
≤7 d From surgery start
RBC + platelets + frozen plasma [IMP and non-IMP] 8.6 (7.6 to 9.7) 16.7 (14.8 to 18.8) 8.1 (5.9 to 10.3) Ratio: 0.51 (0.44 to 0.61) <.001
RBC + platelets + frozen plasma [non-IMP] 8.6 (7.4 to 9.9) 12.2 (10.6 to 14.1) 3.6 (1.5 to 5.8) Ratio: 0.70 (0.57 to 0.86) <.001
RBC transfusion
≤24 h After IMP initiation 97 (45.5) 132 (63.8) 18.2 (8.9 to 27.6) RR: 0.71 (0.60 to 0.85) <.001
LS mean (95% CI), units 1.1 (0.9 to 1.3) 2.0 (1.7 to 2.4) 1.0 (0.5 to 1.4) Ratio: 0.52 (0.40 to 0.68) <.001
≤24 h After cardiopulmonary bypass end 109 (51.2) 135 (65.2) 14.0 (4.7 to 23.4) RR: 0.78 (0.67 to 0.93) .004
LS mean (95% CI), units 1.2 (1.0 to 1.5) 2.2 (1.8 to 2.6) 1.0 (0.5 to 1.4) Ratio: 0.55 (0.43 to 0.72) <.001
≤7 d After surgery start 154 (72.3) 159 (76.8) 4.5 (−3.8 to 12.8) RR: 0.94 (0.84 to 1.05) .29
LS mean (95% CI), units 2.5 (2.1 to 2.9) 3.7 (3.2 to 4.3) 1.2 (0.5 to 1.9) Ratio: 0.67 (0.54 to 0.84) <.001
Platelet transfusionsd
≤24 h After IMP initiation 97 (45.5) 108 (52.2) 6.6 (−2.9 to 16.2) RR: 0.87 (0.72 to 1.06) .17
LS mean (95% CI), units 2.9 (2.2 to 3.7) 4.5 (3.5 to 5.8) 1.6 (0.2 to 2.9) Ratio: 0.65 (0.45 to 0.92) .02
≤24 h After cardiopulmonary bypass end 150 (70.4) 152 (73.4) 3.0 (−5.6 to 11.6) RR: 0.96 (0.85 to 1.08) .49
LS mean (95% CI), units 5.2 (4.4 to 6.1) 6.9 (5.9 to 8.1) 1.7 (0.3 to 3.1) Ratio: 0.75 (0.60 to 0.95) .01
≤7 d After surgery start 151 (70.9) 152 (73.4) 2.5 (−6.0 to 11.1) RR: 0.97 (0.86 to 1.09) .56
LS mean (95% CI), units 5.9 (4.9 to 7.0) 8.2 (6.9 to 9.7) 2.3 (0.5 to 4.0) Ratio: 0.72 (0.56 to 0.92) .009
Other hemostatic products ≤7 d after surgery start
Frozen plasma transfusion (non-IMP) 10 (4.7) 12 (5.8) 1.1 (−3.2 to 5.4) RR: 0.81 (0.36 to 1.83) .61
PCC administration (non-IMP) 1 (0.5) 17 (8.2) 7.7 (3.9 to 11.6) RR: 0.06 (0.01 to 0.43) .005
Fibrinogen concentrate administration 91 (42.7) 97 (46.9) 4.1 (−5.4 to 13.6) RR: 0.91 (0.74 to 1.13) .39
Cryoprecipitate transfusion 13 (6.1) 17 (8.2) 2.1 (−2.8 to 7.0) RR: 0.74 (0.37 to 1.49) .40
Recombinant activated factor VII administration; ≤7 d after surgery start 2 (0.9) 10 (4.8) 3.9 (0.7 to 7.1) RR: 0.19 (0.04 to 0.88) .03
Chest tube drainage, LS mean (95% CI), mL
12 h 471 (415 to 527) 642 (585 to 699) 171 (91 to 250) NA <.001
24 h 691 (616 to 766) 923 (847 to 999) 232 (126 to 338) NA <.001
Change in INR, LS mean (95% CI)e −0.84 (−0.77 to −0.92) [n = 200] −0.70 (−0.62 to −0.77) [n = 193] 0.15 (0.04 to 0.26) NA .008
Time from start of first dose of IMP to ICU arrival, median (IQR), hf 1.0 (0.6 to 1.7) [n = 199] 1.2 (0.7 to 2.0) [n = 178] 0.19 (−0.02 to 0.40) NA .07

FARES-II试验(Karkouti等,2025年)是一项关键的多中心随机非劣效性试验,比较了PCC与FP在CPB后成人凝血功能障碍出血中的应用。该试验在北美12家医院进行,共纳入538名患者,结果显示PCC不仅达到了非劣效性标准,而且优于FP,止血有效率为77.9%,而FP为60.4%(P<0.001)。PCC组患者接受的输血显著较少(平均差异2.7单位;P=0.002),并且经历的严重不良事件更少(36.2% vs 47.3%,P=0.02),包括急性肾损伤的发生率显著降低(10.3% vs 18.8%,P=0.02)。

Figure 2. Difference in Hemostatic Response Failure Rates.

按治疗类别划分的证据

Callum等(2025年)的一项系统评价和荟萃分析纳入了四项RCTs,共671名患者,发现PCC在干预后24小时内显著改善了血红蛋白水平并减少了红细胞输血需求,且未增加不良事件。分析还指出,PCC组国际标准化比率(INR)有所改善。

实验室机制数据(Bartoszko等,2025年)表明,PCC输注在CPB后比FP更快地恢复凝血酶生成,且未促进高凝状态,这得到术后早期维生素K依赖性凝血因子和天然抗凝剂如蛋白C和S水平较高的支持。

其他试点研究探讨了高危心脏手术患者术中预防性使用PCC的情况,报告胸管引流量和输血率减少,右心室衰竭和血栓事件的发生率较低(Dhamoon等,2022年)。

比较安全性和有效性

尽管PCC表现出优势,但对高凝状态和血栓栓塞的担忧已通过广泛的评估得到缓解,RCTs和荟萃分析报告的安全性令人放心。FARES-II试验报告PCC组的严重不良事件显著较少。同样,一项随机试验调查了PCC与FP在紧急手术中快速逆转维生素K拮抗剂的效果(Pabinger等,2015年),发现PCC在止血效果上更优,且未增加血栓并发症。

一些早期回顾性分析指出PCC组急性肾损伤的发生率较高(Hickey等,2019年),但这一发现并未在RCTs中一致观察到,包括在FARES-II试验中,PCC组的急性肾损伤发生率较低。

方法学进展和未来研究方向

FARES-II试验采用了严格的随机设计和大样本量,提高了证据质量,超过了之前的试点和观察性研究。然而,该试验是非盲的,正在进行的盲法研究旨在复制结果并澄清性别和种族亚组的有效性。PCC如何减少严重不良事件的机制理解尚不完整,需要进一步研究凝血动力学和炎症途径。

此外,探索PCC在代表性不足的手术类型中的应用和长期结局仍然必要。正在进行的试验旨在确认最佳剂量策略、给药时机和PCC与FP的成本效益比较。

专家评论

当前指南通常倾向于在心脏手术中使用FP来管理凝血功能障碍出血,主要原因是其广泛的历史使用和可用性。然而,新兴证据,包括标志性的FARES-II试验,支持转向以4F-PCC作为一线治疗。

PCC的小体积和快速复溶减少了液体超负荷的风险,这是心脏外科患者易发生血流动力学不稳定的患者群体中的重要优势。增强的凝血酶生成恢复解决了CPB后出血的关键病理生理机制。

尽管如此,FARES-II试验的非盲性质和某些手术亚型的排除限制了其普遍性。在全面临床实施之前,还需要进行更多试验,特别是针对不同患者群体和盲法协议的研究。潜在的成本影响和资源可用性也可能影响采用。

PCC治疗患者中严重不良事件和急性肾损伤发生率较低的机制尚待阐明,假设包括减少输血相关免疫调节和液体超负荷效应。

结论

近期大规模的FARES-II随机试验及其前多项研究支持,4F-PCC在心脏手术中管理凝血功能障碍出血方面,是一种临床优越且安全的替代方案。PCC提供了止血效果的优势,减少了血液制品输注需求,并最小化了不良事件,包括急性肾损伤。

未来的研究应解决性别和种族特异性反应、获益机制途径,并评估PCC在更广泛的心脏外科手术中的应用。鉴于高质量证据的不断积累,应考虑将PCC纳入临床实践指南。

参考文献

  • Karkouti K, Callum JL, Bartoszko J, et al. 四因子凝血酶原复合物浓缩剂与冷冻血浆在心脏手术中凝血功能障碍出血的治疗:FARES-II多中心随机临床试验. JAMA. 2025;333(20):1781-1792. doi:10.1001/jama.2025.3501 IF: 55.0 Q1 . PMID: 40156829 IF: 55.0 Q1
  • Bartoszko J, Gabarin N, Tanaka K, Callum J. 四因子凝血酶原复合物浓缩剂是否会在北美取代心脏手术中的血浆? Curr Opin Anaesthesiol. 2025. doi:10.1097/ACO.0000000000001602 IF: 2.1 Q2 . PMID: 41384776 IF: 2.1 Q2
  • Callum JL, Refaai MA, Estcourt L, et al. 四因子凝血酶原复合物浓缩剂与新鲜冰冻血浆在心脏手术出血管理中的影响:随机临床试验的系统评价和荟萃分析. J Cardiothorac Vasc Anesth. 2025;39(12):3333-3337. doi:10.1053/j.jvca.2025.09.009 IF: 2.1 Q2 . PMID: 41027796 IF: 2.1 Q2
  • Bartoszko J, Callum JL, Tanaka KA, et al. 心脏手术中四因子凝血酶原复合物浓缩剂或血浆输注后的凝血酶生成. J Thromb Thrombolysis. 2025;58(2):309-318. doi:10.1007/s11239-024-03061-3 IF: 2.2 Q2 . PMID: 39633218 IF: 2.2 Q2
  • O’Connell K, et al. 高出血风险心脏手术患者术中预防性给予PCC4:一项试点研究. J Card Surg. 2022;37(12):5130-5134. doi:10.1111/jocs.17224 IF: 1.3 Q3 . PMID: 36423240 IF: 1.3 Q3
  • Hickey M, et al. 四因子凝血酶原复合物浓缩剂在心脏手术中的应用:系统评价和荟萃分析. Ann Thorac Surg. 2019;107(4):1275-1283. doi:10.1016/j.athoracsur.2018.10.013 IF: 3.9 Q1 . PMID: 30458156 IF: 3.9 Q1
  • Pabinger I, et al. 四因子凝血酶原复合物浓缩剂与血浆在紧急手术或侵入性操作中快速逆转维生素K拮抗剂的对比:一项3b期、开放标签、非劣效性、随机试验. Lancet. 2015;385(9982):2077-2087. doi:10.1016/S0140-6736(14)61685-8 IF: 88.5 Q1 . PMID: 25728933 IF: 88.5 Q1

Comments

No comments yet. Why don’t you start the discussion?

发表回复