NLRP3 Inflammasome and Gut Microbiota-Brain Axis: Emerging Insights into White Matter Injury After Intracerebral Hemorrhage

NLRP3 Inflammasome and Gut Microbiota-Brain Axis: Emerging Insights into White Matter Injury After Intracerebral Hemorrhage

Highlight

  • Intracerebral hemorrhage (ICH) is a life-threatening stroke subtype often complicated by secondary white matter injury that worsens prognosis.
  • Bidirectional communication through the gut microbiota-brain axis influences inflammation and recovery after ICH, with dysbiosis being a key contributor.
  • The NLRP3 inflammasome is a pivotal mediator linking gut microbiota disturbances to neuroinflammation and white matter injury.
  • Targeting the gut microbiota-brain axis and inhibiting NLRP3 inflammasome offer promising therapeutic strategies for improving outcomes after ICH.

Study Background and Disease Burden

Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes and represents the most devastating stroke subtype due to high rates of mortality and long-term disability. Secondary injury mechanisms, especially white matter injury (WMI) surrounding the hematoma, significantly contribute to poor functional outcomes by impairing neuronal connectivity and repair processes. Despite advances in acute management, effective therapies targeting secondary brain injury after ICH remain limited.

In recent years, increasing evidence supports a crucial role of the gut microbiota-brain axis—a complex bidirectional system connecting the gastrointestinal tract and central nervous system— in influencing stroke pathophysiology and recovery. This axis involves neural, immune, and metabolic pathways that modulate neuroinflammation and neuroregeneration.

One critical molecular player associated with inflammation after ICH is the NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome. Activation of the NLRP3 inflammasome triggers release of proinflammatory cytokines such as IL-1β and IL-18, exacerbating neuroinflammatory cascades that contribute to BBB disruption and WMI. Understanding how gut microbiota disturbances influence NLRP3 inflammasome activation offers novel perspectives for therapeutic intervention.

Study Design

This review synthesizes evidence from experimental and clinical studies that investigate: 1) alterations in gut microbiota composition following ICH; 2) mechanisms by which microbiota dysbiosis activates the NLRP3 inflammasome via metabolic, neural, and immune pathways; 3) the role of NLRP3 inflammasome activation in secondary WMI after ICH; and 4) emerging therapeutic strategies to modulate these pathways to improve neurological recovery.

The included studies use animal models of ICH and human observational data characterizing gut microbiota changes, inflammatory markers, and imaging-based white matter integrity. Mechanistic insights derive from molecular and cellular analyses of inflammasome activation, neuroinflammation, and neural repair processes.

Key Findings

Gut Microbiota Dysbiosis Following ICH

Post-ICH dysbiosis typically presents as reduced diversity of beneficial commensal bacteria and increased abundance of pathogenic species. Changes include diminished short-chain fatty acid (SCFA)-producing bacteria and overgrowth of endotoxin-rich gram-negative bacteria. This imbalance impairs gut barrier integrity, leading to systemic inflammation and altered metabolite profiles.

Mechanisms Linking Dysbiosis to NLRP3 Inflammasome Activation

Metabolic Pathways:

– SCFAs (e.g., butyrate) normally inhibit inflammasome activation; their reduction removes this brake, facilitating NLRP3 priming.

– Elevated lipopolysaccharides (LPS) from gram-negative bacteria activate Toll-like receptor 4 (TLR4), promoting inflammasome assembly.

– Altered bile acids, lactic acid, trimethylamine-N-oxide (TMAO), and tryptophan metabolites modulate systemic and brain immune responses, influencing inflammasome activity.

Neural Pathways:

– The vagus nerve mediates anti-inflammatory gut-to-brain signaling; impairment after ICH may exacerbate inflammation and inflammasome activation.

– Sympathetic nervous system activation modulates immune cell trafficking and cytokine release, affecting inflammasome status.

Immune Pathways:

– Microglia serve as resident brain immune cells that express NLRP3. Microbial signals modulate microglial priming and inflammasome activation.

– T cell populations influenced by gut microbiota alteration shape neuroinflammatory milieu and inflammasome engagement.

Relationship Between NLRP3 Activation and White Matter Injury

Activated NLRP3 inflammasomes contribute to secondary WMI after ICH through: 1) Disruption of blood-brain barrier (BBB) integrity leading to infiltration of peripheral immune cells and edema; 2) Amplification of neuroinflammation causing oligodendrocyte death and myelin degradation; 3) Impairment of nerve regeneration via inhibition of neural stem cell proliferation and axonal repair.

Potential Treatment Strategies

Emerging therapeutic approaches targeting the gut microbiota-NLRP3 axis include:

– Probiotics, prebiotics, and fecal microbiota transplantation to restore microbial balance.

– Pharmacological inhibitors of NLRP3 inflammasome components (e.g., MCC950).

– Modulation of metabolic pathways using SCFA supplementation or bile acid receptor agonists.

– Vagus nerve stimulation to promote anti-inflammatory signaling.

– Immunomodulatory strategies enhancing regulatory T cell responses.

These approaches aim to attenuate neuroinflammation, protect white matter integrity, and improve functional outcomes.

Expert Commentary

Experts recognize that unraveling the gut-brain inflammatory axis, particularly the pivotal role of NLRP3 inflammasome, opens new avenues for therapeutic intervention after ICH. While preclinical models provide compelling mechanistic evidence, translation to clinical practice necessitates well-designed trials to assess efficacy and safety. Current limitations include patient heterogeneity and complexity of microbiota-host interactions. Nonetheless, integrating microbiome modulation with targeted inflammasome inhibition represents a promising path toward mitigating secondary brain injury and promoting recovery.

Conclusion

The interplay between gut microbiota dysbiosis and NLRP3 inflammasome activation is a critical driver of secondary white matter injury following intracerebral hemorrhage. Disruption of this axis exacerbates neuroinflammation, BBB breakdown, and impairments in neural repair mechanisms. Targeting the gut microbiota-brain axis and NLRP3 inflammasome offers a novel and promising therapeutic strategy to improve neurological outcomes after ICH. Future research should focus on translational studies and optimization of combined gut microbiota and inflammasome-targeted interventions.

References

1. Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 inflammasome and gut microbiota-brain axis: A new perspective on white matter injury after intracerebral hemorrhage. Neural Regen Res. 2026 Jan 1;21(1):62-80. doi: 10.4103/NRR.NRR-D-24-00917.

2. Yan AW, Charles EJ, Pan X, et al. Gut microbiota and the immune system in ischemic stroke: insight into systemic and cerebral inflammation. Stroke. 2022;53(6):1931-1940.

3. Franchi L, Eigenbrod T, Nunez G. The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241-247.

4. Tang WHW, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183-1196.

5. Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal immune cells. Nat Med. 2016;22(5):516-523.

NLRP3 炎症小体与肠道微生物群-脑轴:脑出血后白质损伤的新见解

NLRP3 炎症小体与肠道微生物群-脑轴:脑出血后白质损伤的新见解

亮点

  • 脑出血 (ICH) 是一种危及生命的卒中亚型,常因继发性白质损伤而加重预后。
  • 通过肠道微生物群-脑轴的双向通信影响 ICH 后的炎症和恢复过程,其中失调是关键因素。
  • NLRP3 炎症小体是连接肠道微生物群紊乱与神经炎症和白质损伤的关键介质。
  • 靶向肠道微生物群-脑轴和抑制 NLRP3 炎症小体为改善 ICH 后的预后提供了有前景的治疗策略。

研究背景与疾病负担

脑出血 (ICH) 占所有卒中的 10-15%,是最具破坏性的卒中亚型,因其高死亡率和长期残疾率。继发性损伤机制,尤其是血肿周围的白质损伤 (WMI),通过损害神经元连接性和修复过程显著影响功能结局。尽管急性管理取得了进展,但针对 ICH 后继发性脑损伤的有效疗法仍有限。

近年来,越来越多的证据支持肠道微生物群-脑轴——一个连接胃肠道和中枢神经系统的复杂双向系统——在影响卒中病理生理和恢复中的关键作用。该轴涉及调节神经炎症和神经再生的神经、免疫和代谢途径。

与 ICH 后炎症相关的关键分子参与者之一是 NLRP3(NACHT、LRR 和吡喃结构域包含蛋白 3)炎症小体。NLRP3 炎症小体的激活触发促炎细胞因子(如 IL-1β 和 IL-18)的释放,加剧神经炎症级联反应,导致血脑屏障 (BBB) 破坏和 WMI。了解肠道微生物群紊乱如何影响 NLRP3 炎症小体的激活为治疗干预提供了新的视角。

研究设计

本综述综合了实验和临床研究的证据,探讨了:1) ICH 后肠道微生物群组成的改变;2) 微生物群失调通过代谢、神经和免疫途径激活 NLRP3 炎症小体的机制;3) NLRP3 炎症小体激活在 ICH 后继发性 WMI 中的作用;4) 调节这些途径以改善神经功能恢复的新兴治疗策略。

纳入的研究使用了 ICH 的动物模型和描述肠道微生物群变化、炎症标志物和基于成像的白质完整性的临床观察数据。机制见解来自对炎症小体激活、神经炎症和神经修复过程的分子和细胞分析。

主要发现

ICH 后肠道微生物群失调

ICH 后的失调通常表现为有益共生细菌多样性的减少和致病物种的增加。变化包括短链脂肪酸 (SCFA) 产生菌的减少和富含内毒素的革兰氏阴性细菌的过度生长。这种失衡损害了肠道屏障完整性,导致全身炎症和代谢物谱的改变。

失调与 NLRP3 炎症小体激活的机制联系

代谢途径:

– SCFA(例如丁酸盐)通常抑制炎症小体激活;其减少去除了这一制动作用,促进了 NLRP3 的初步激活。

– 革兰氏阴性细菌产生的脂多糖 (LPS) 激活 Toll 样受体 4 (TLR4),促进炎症小体组装。

– 胆汁酸、乳酸、三甲胺 N-氧化物 (TMAO) 和色氨酸代谢物的改变调节全身和脑部免疫反应,影响炎症小体活性。

神经途径:

– 迷走神经介导抗炎的肠道-脑信号传导;ICH 后的损伤可能加剧炎症和炎症小体激活。

– 交感神经系统的激活调节免疫细胞迁移和细胞因子释放,影响炎症小体状态。

免疫途径:

– 小胶质细胞作为脑内驻留的免疫细胞表达 NLRP3。微生物信号调节小胶质细胞的初步激活和炎症小体激活。

– 受肠道微生物群改变影响的 T 细胞群体塑造神经炎症环境并参与炎症小体激活。

NLRP3 激活与白质损伤的关系

激活的 NLRP3 炎症小体通过以下方式在 ICH 后的继发性 WMI 中发挥作用:1) 血脑屏障 (BBB) 完整性的破坏导致外周免疫细胞浸润和水肿;2) 神经炎症的放大导致少突胶质细胞死亡和髓鞘降解;3) 通过抑制神经干细胞增殖和轴突修复损害神经再生。

潜在治疗策略

针对肠道微生物群-NLRP3 轴的新兴治疗方法包括:

– 益生菌、益生元和粪便微生物群移植以恢复微生物平衡。

– 针对 NLRP3 炎症小体成分的药物抑制剂(如 MCC950)。

– 使用 SCFA 补充剂或胆汁酸受体激动剂调节代谢途径。

– 迷走神经刺激以促进抗炎信号传导。

– 免疫调节策略增强调节性 T 细胞反应。

这些方法旨在减轻神经炎症,保护白质完整性,并改善功能结局。

专家评论

专家认为,揭示肠道-脑炎症轴,特别是 NLRP3 炎症小体的关键作用,为 ICH 后的治疗干预开辟了新途径。虽然临床前模型提供了令人信服的机制证据,但转化为临床实践需要精心设计的试验来评估有效性和安全性。当前的限制包括患者异质性和微生物群-宿主相互作用的复杂性。尽管如此,将微生物组调节与靶向炎症小体抑制相结合,代表了一条缓解继发性脑损伤并促进恢复的有希望的路径。

结论

肠道微生物群失调与 NLRP3 炎症小体激活之间的相互作用是脑出血后继发性白质损伤的关键驱动因素。这一轴的破坏加剧了神经炎症、血脑屏障破坏和神经修复机制的损害。靶向肠道微生物群-脑轴和 NLRP3 炎症小体为改善 ICH 后的神经学预后提供了一种新颖且有前景的治疗策略。未来的研究应集中在转化研究和优化联合肠道微生物群和炎症小体靶向干预措施上。

参考文献

1. Cai X, Cai X, Xie Q, Xiao X, Li T, Zhou T, Sun H. NLRP3 炎症小体和肠道微生物群-脑轴:脑出血后白质损伤的新视角。Neural Regen Res. 2026 Jan 1;21(1):62-80. doi: 10.4103/NRR.NRR-D-24-00917.

2. Yan AW, Charles EJ, Pan X, et al. 肠道微生物群和免疫系统在缺血性卒中中的作用:对系统性和脑部炎症的洞察。Stroke. 2022;53(6):1931-1940.

3. Franchi L, Eigenbrod T, Nunez G. 炎症小体:一种调节免疫反应和疾病发病机制的半胱天冬酶-1 激活平台。Nat Immunol. 2009;10(3):241-247.

4. Tang WHW, Kitai T, Hazen SL. 肠道微生物群在心血管健康与疾病中的作用。Circ Res. 2017;120(7):1183-1196.

5. Benakis C, Brea D, Caballero S, et al. 共生微生物群通过调节肠道免疫细胞影响缺血性卒中的结局。Nat Med. 2016;22(5):516-523.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *