How Micronutrients Have Shaped Human DNA: Insights from Global Genetic Adaptations

How Micronutrients Have Shaped Human DNA: Insights from Global Genetic Adaptations

Introduction

Micronutrients are minerals required by the human body in minute amounts, often measured in micrograms or milligrams. Though small in quantity, their significance cannot be overstated — these elements underpin key physiological functions such as metabolism, immune response, development, and cellular repair. Beyond their critical roles in health, emerging research unveils that micronutrients have also played a vital role in shaping our genetic makeup throughout human evolution.

On September 10, 2025, a groundbreaking study published in The American Journal of Human Genetics (Cell Press) illuminated how ancient human populations across the globe genetically adapted to regional variations in micronutrient availability — particularly iron, calcium, zinc, selenium, iodine, magnesium, and others. This study led by Jasmin Rees, a postdoctoral researcher at the University of Pennsylvania and former University College London doctoral candidate, represents the first comprehensive global analysis investigating how multiple micronutrients have driven human evolutionary adaptations.

The Crucial Role of Micronutrients in Human Health and Evolution

Micronutrients, including minerals like iron, calcium, zinc, and selenium, are essential cofactors in numerous biochemical pathways. Deficiencies or excesses can severely affect growth, immune competence, cognitive development, and overall survival. The study’s authors emphasize that the content of these minerals in foods depends substantially on the mineral composition of local soils. In many regions of the world prior to the advent of modern dietary supplements and fortified foods, human populations faced chronic shortages or intermittent excesses of these key nutrients owing to their geographic environment.

For example, in parts of the African rainforest, iodine deficiency — caused by iodine-poor soils — led to endemic goiter, a condition marked by thyroid gland enlargement. Such environmental pressures could exert selective forces on the human genome if persistent and severe enough.

Investigating the Genetic Footprints of Micronutrient Adaptations

Jasmin Rees and colleagues aimed to decode this evolutionary influence by focusing on genes connected to the absorption, transport, and utilization of 13 essential minerals. Their study analyzed genetic sequences from over 900 individuals representing 40 diverse global populations, tracing the adaptive changes over time.

The researchers examined 276 genes involved in micronutrient biology, including those regulating iron metabolism, calcium channels, zinc transporters, and selenium enzymes. This scope allowed a panoramic view of how diverse mineral environments influenced human genomes.

“To our knowledge, this is the first systematic global-scale study exploring how multiple micronutrients have driven human adaptation,” Rees states.

Key Findings: Evidence of Population-Specific Genetic Adaptations

The analysis uncovered that every one of the 13 studied micronutrients left genetic adaptation signatures in at least one population. These findings affirm that local mineral availability exerted evolutionary pressure historically, molding genetic variations that helped populations survive nutrient limitations or toxicities.

For instance, in the iodine-deficient soils of Central America, notably among the Maya, researchers identified significant adaptations in genes regulating iodine metabolism. These variants likely evolved to moderate the adverse effects of dietary iodine scarcity.

Conversely, in some regions of South Asia where soil magnesium levels are exceptionally high, two genes related to magnesium uptake and regulation displayed selective variations. Researchers propose these genetic changes might protect inhabitants from magnesium toxicity.

Such population-specific genetic signatures highlight complex co-evolutionary dynamics where environment, diet, and human biology intertwine.

Broader Implications: Micronutrients, Environment, and Public Health

Understanding how micronutrient availability influenced genetic adaptation offers valuable insights for modern health challenges. Climate change, deforestation, and intensive agriculture increasingly alter soil composition and nutrient cycles worldwide, risking novel micronutrient imbalances.

Rees highlights that identifying populations historically shaped by particular micronutrient pressures can help pinpoint groups vulnerable to emerging nutritional deficiencies or toxicities. For example, communities evolved under chronic iodine scarcity may be more susceptible to thyroid disorders if environmental iodine further diminishes.

Connecting Evolutionary Genetics to Public Health Strategy

The study stands as a preliminary but important step toward leveraging evolutionary genetics for public health planning. By integrating genetic data with environmental and nutritional information, health policymakers can better predict which populations face increased risks due to shifting mineral access.

This approach supports tailored nutritional interventions and resource allocation to mitigate micronutrient-related diseases and health disparities.

Expert Insights and Future Directions

Jasmin Rees envisions that ongoing research into the genetic basis of micronutrient adaptations will yield further insights into the interplay between diet, environment, and human biology.

“Our hope is that these findings will provide a scientific basis for future public health decisions, especially as environmental changes threaten to alter the micronutrient landscape drastically,” she notes.

Continued interdisciplinary investigations blending genomics, nutrition science, anthropology, and environmental studies are crucial to unravel how ancient adaptation informs current health vulnerabilities and resilience.

Case Scenario: Navigating Nutrition in Diverse Genetic Backgrounds

Consider Emily, a 35-year-old nutritionist working with Native American communities in the Southwestern United States. Being aware that the ancestors of these populations may have evolved genetic adaptations to the regional nutrient environment, Emily incorporates this knowledge into dietary assessments.

For example, she notes that iodine deficiency historically influenced populations in surrounding areas. Thus, she emphasizes monitoring thyroid function and sufficient iodine intake, especially as environmental changes affect soil mineral content.

Such individualized nutritional counseling informed by genetic and environmental history exemplifies the practical potential of this research.

Conclusion

This landmark study reveals that micronutrients have been powerful evolutionary forces shaping human DNA across global populations. Genetic adaptations linked to regional mineral availabilities underscore the deep interconnection between environment, diet, and genetics.

As modern agriculture and climate pressures transform soil nutrient profiles, understanding these evolutionary legacies is crucial for predicting nutritional vulnerabilities and guiding effective public health strategies.

Future research expanding this global genetic and nutritional framework promises to enhance personalized nutrition, disease prevention, and health equity worldwide.

References

Rees J, Castellano S, Andrés AM. Global impact of micronutrients in modern human evolution. Am J Hum Genet. 2025 Aug 29:S0002-9297(25)00315-5. doi: 10.1016/j.ajhg.2025.08.005. Epub ahead of print. PMID: 40934922.

微量营养素如何塑造人类DNA:全球遗传适应的洞见

微量营养素如何塑造人类DNA:全球遗传适应的洞见

引言

微量营养素是人体需要量极微的矿物质,通常以微克或毫克计量。尽管数量微小,但其重要性不容忽视——这些元素支撑着代谢、免疫反应、发育和细胞修复等关键生理功能。除了在健康中的重要作用外,新兴研究表明,微量营养素在人类进化过程中也扮演了至关重要的角色。

2025年9月10日,发表在《美国人类遗传学杂志》(Cell Press)上的一项开创性研究揭示了古代人类群体如何在全球范围内遗传适应区域微量营养素可获得性的变化——特别是铁、钙、锌、硒、碘、镁等。这项由宾夕法尼亚大学博士后研究员Jasmin Rees领导的研究(前伦敦大学学院博士生)代表了首次全面的全球分析,探讨了多种微量营养素如何推动人类进化适应。

微量营养素在人类健康和进化中的关键作用

微量营养素,包括铁、钙、锌和硒等矿物质,是许多生化途径中必不可少的辅因子。缺乏或过量都会严重影响生长、免疫能力、认知发展和整体生存。研究作者强调,这些矿物质在食物中的含量很大程度上取决于当地土壤的矿物组成。在现代膳食补充剂和强化食品出现之前,世界许多地区的居民因地理环境而面临这些关键营养素的慢性短缺或间歇性过剩。

例如,在非洲雨林的部分地区,由于土壤贫碘导致碘缺乏,引起了地方性甲状腺肿大,表现为甲状腺增大。这种环境压力如果持续且严重,可能会对人类基因组产生选择性作用。

探究微量营养素适应的遗传足迹

Jasmin Rees及其同事旨在通过关注与13种必需矿物质吸收、运输和利用相关的基因来解码这种进化影响。他们的研究分析了来自40个不同全球人口的900多名个体的遗传序列,追溯了随时间的变化。

研究人员检查了276个与微量营养素生物学相关的基因,包括调节铁代谢、钙通道、锌转运蛋白和硒酶的基因。这一范围使他们能够全面了解不同矿物环境如何影响人类基因组。

“据我们所知,这是首次系统性的全球规模研究,探讨了多种微量营养素如何推动人类适应。”Rees表示。

主要发现:人群特定的遗传适应证据

分析结果显示,13种研究的微量营养素中有每一种都在至少一个群体中留下了遗传适应的痕迹。这些发现证实了历史上当地矿物可用性施加了进化压力,形成了有助于群体应对营养限制或毒性问题的遗传变异。

例如,在中美洲碘缺乏的土壤中,特别是在玛雅人中,研究人员发现了与碘代谢调节有关的基因显著适应。这些变异可能进化以减轻饮食碘缺乏的不利影响。

相反,在南亚某些土壤镁含量异常高的地区,两个与镁吸收和调节相关的基因显示了选择性变异。研究人员认为,这些遗传变化可能保护居民免受镁毒性的危害。

这些人群特定的遗传特征突显了环境、饮食和人类生物学之间复杂的共同进化动态。

更广泛的影响:微量营养素、环境和公共卫生

了解微量营养素可用性如何影响遗传适应为现代健康挑战提供了宝贵的见解。气候变化、森林砍伐和集约化农业正在全球范围内改变土壤组成和营养循环,可能导致新的微量营养素失衡。

Rees指出,识别历史上受到特定微量营养素压力影响的人群可以帮助确定易受新出现的营养缺乏或毒性影响的群体。例如,长期处于碘缺乏环境下的社区如果环境碘进一步减少,可能更容易患上甲状腺疾病。

将进化遗传学与公共卫生策略联系起来

这项研究是初步但重要的一步,旨在利用进化遗传学进行公共卫生规划。通过将遗传数据与环境和营养信息结合,卫生政策制定者可以更好地预测哪些群体因矿物获取变化而面临更高的风险。

这种方法支持定制的营养干预措施和资源分配,以减轻微量营养素相关疾病和健康不平等。

专家见解和未来方向

Jasmin Rees展望,关于微量营养素适应的遗传基础的持续研究将提供进一步的见解,揭示饮食、环境和人类生物学之间的相互作用。

“我们的希望是,这些发现将为未来的公共卫生决策提供科学依据,尤其是在环境变化威胁大幅改变微量营养素格局的情况下。”她指出。

继续进行跨学科研究,结合基因组学、营养科学、人类学和环境研究,对于解开古代适应如何影响当前的健康脆弱性和韧性至关重要。

案例情景:在多样化的遗传背景下导航营养

考虑Emily,一位35岁的营养师,与美国西南部的原住民社区合作。意识到这些人群的祖先可能已经适应了该地区的营养环境,Emily将这一知识融入到饮食评估中。

例如,她注意到碘缺乏症历史上影响了周边地区的人群。因此,她特别强调监测甲状腺功能和充足的碘摄入,尤其是随着环境变化影响土壤矿物含量。

这种基于遗传和环境历史的个性化营养咨询展示了这项研究的实际潜力。

结论

这项具有里程碑意义的研究揭示了微量营养素作为强大的进化力量,塑造了全球各地人群的DNA。与区域矿物可获得性相关的遗传适应突显了环境、饮食和遗传之间的深刻联系。

随着现代农业和气候压力改变土壤营养素谱型,了解这些进化遗产对于预测营养脆弱性并指导有效的公共卫生策略至关重要。

未来扩展这一全球遗传和营养框架的研究有望增强个性化营养、疾病预防和全球健康公平。

参考文献

Rees J, Castellano S, Andrés AM. 全球微量营养素对现代人类进化的影响. Am J Hum Genet. 2025 Aug 29:S0002-9297(25)00315-5. doi: 10.1016/j.ajhg.2025.08.005. Epub ahead of print. PMID: 40934922.

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *